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Radu Ioan Boţ · Gábor Kassay · Gert Wanka

Received: 7 March 2008 / Accepted: 8 March 2008 / Published online: 28 March 2008
© Springer Science+Business Media, LLC. 2008

Abstract We deal with duality for almost convex finite dimensional optimization problems
by means of the classical perturbation approach. To this aim some standard results from the
convex analysis are extended to the case of almost convex sets and functions. The duality for
some classes of primal-dual problems is derived as a special case of the general approach.
The sufficient regularity conditions we need for guaranteeing strong duality are proved to be
similar to the ones in the convex case.
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1 Introduction

Dealing with duality for a given optimization problem is one of the main features in mathe-
matical programming and convex analysis both from theoretical and practical point of view.
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There is a well developed theory of duality for convex optimization problems in finite
dimensional spaces, as one can read for instance in [15]. Distinct dual problems have been
investigated by using the so-called perturbation approach in [16]. This is based on the theory
of conjugate functions and describes how a dual problem can be assigned to a primal one ([5]).

Generalized convex functions are those non-convex functions which possess at least one
valuable property of convex functions. The growing interest in them during the last decades
comes with no surprise since they are often more suitable than convex functions to describe
practical problems originated from economics, management science, engineering, etc. (see
for instance [10,12]). Therefore, the question concerning possible extensions of different
optimality conditions and duality results also for non-convex programming problems arises
naturally. Giannessi and Rapcsák in [9] and Mastroeni and Rapcsák in [13] have given state-
ments on the solvability of generalized systems, which is an important tool for proving duality
results. Kanniappan has considered in [11] a Fenchel-type duality theorem for non-convex
and non-differentiable maximization problems, Beoni has considered in [1] the extension of
the same result in the context of fractional programming, while Penot and Volle ([14]) have
studied Fenchel duality for quasiconvex problems. In [4] an extension of Fenchel’s duality
theorem to so-called nearly convex functions is given. Regarding this generalized convexity
concept, let us also mention our paper [2], where we deal with duality for an optimization
problem with a nearly convex objective function subject to geometrical and inequality cone
constraints also defined by nearly convex functions.

In this paper we consider another generalized convexity concept, called almost convex-
ity, which is due to Frenk and Kassay ([6]). Almost convex sets are defined such that their
closure is a convex set, and moreover, the relative interior of their closure is contained in
the set itself. This concept leads to the so-called almost convex functions: those functions
whose epigraphs are almost convex sets. We show first how standard results from the convex
analysis may be extended to the case of almost convex sets and functions. Along with the
nearly convex functions, the class of almost convex functions is another generalization of
the class of convex functions which fulfills some of the important properties of the latter.
The two classes of almost and nearly convex functions contain strictly the class of convex
functions and do not coincide ([3]). By means of some counterexamples we also emphasize
some basic properties of convex sets (functions) which do not hold for almost convex sets
(functions). Among these, we mention that the intersection of almost convex sets may not
be almost convex, and there are almost convex functions which are not quasiconvex.

Considering a general almost convex optimization problem we construct a dual to it by
means of the classical perturbation approach and state some sufficient regularity conditions
which guarantee strong duality. The duality for some classes of primal-dual problems is
derived as a special case of the general approach. In this way we extend some results from
[2] and [3].

By their definition it follows immediately that almost convex functions which are not
convex fail to be lower semicontinuous. Thus the novelty of our results may be found exclu-
sively within optimization problems with objectives which are not lower semicontinuous
and/or feasible sets which are not closed.

The paper is organized as follows. Section 2 recalls the definitions of almost convex sets
and functions as well as presents some basic facts and properties for them, necessary for the
subsequent investigations. In Sect. 3 we deal with the duality in the general framework of
the perturbation approach, by introducing to a primal optimization problem a conjugate dual
problem. We are able to verify a strong duality assertion by replacing the classical convexity
assumptions with almost convexity ones and assuming a general regularity condition. Finally,
in Sect. 4 we get as a particular case strong duality results for the Lagrange and the so-called
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Fenchel–Lagrange dual problem of an optimization problem with an almost convex objective
function and almost convex inequality cone constraints. The regularity condition we need
here is a generalized Slater condition. Under the use of a classical regularity condition, the
Fenchel duality in case of almost convex optimization problems is obtained as another appli-
cation of the general results. The presentation is accompanied by several examples illustrating
the theoretical considerations and results.

2 Almost convex sets and functions: basic properties

2.1 Almost convex sets

Definition 2.1 (cf. [6]) A subset C ⊆ R
n is called almost convex, if cl(C) is a convex set

and ri(cl(C)) ⊆ C.

It is obvious that any convex set C ⊆ R
n is also almost convex, but the converse is not

true in general as the following example shows.

Example 2.1 (Almost convex set which is not convex.) Let C = ([0, 1] × [0, 1]) \ {(0, y) :
y ∈ (R \ Q)} ⊆ R

2. It is easy to check that C is almost convex but not a convex set.

Some properties which are specific for convex sets in R
n hold also for almost convex sets,

as the following results show.

Lemma 2.1 For any almost convex set C ⊆ R
n it follows that

ri(cl(C)) = ri(C). (1)

Proof If C is empty, then (1) is trivial. Otherwise cl(C) is nonempty and convex, and
so ri(cl(C)) �= ∅. This implies by Lemma 1.12, relations (1.19) and (1.24) in [8] that
aff (ri(cl(C))) = aff (cl(C)) = aff (C), which yields by almost convexity of C that
ri(cl(C)) ⊆ ri(C). Since the reverse inclusion is trivial, we obtain (1). ��

Notice that by the previous lemma, any nonempty almost convex set in R
n has a nonempty

relative interior.

Lemma 2.2 Let C ⊆ R
n be any almost convex set. Then

αcl(C) + (1 − α)ri(C) ⊆ ri(C), ∀ 0 ≤ α < 1. (2)

Proof Since cl(C) is a convex set, by a well-known result (see for instance Rockafellar [15])
αcl(C) + (1 − α)ri(cl(C)) ⊆ ri(cl(C)), ∀ 0 ≤ α < 1, and this, together with (1) proves
the statement. ��

The proof of the next lemma is obvious taking into account the well-known properties of
the operators cl and ri.

Lemma 2.3 Suppose that C ⊆ R
n and D ⊆ R

m are almost convex sets. Then C ×D is also
almost convex in R

n × R
m.

Lemma 2.4 Suppose that C ⊆ R
n is an almost convex set and let T : R

n → R
m be a linear

operator. Then

(i) The set T (C) is almost convex;
(ii) ri(T (C)) = T (ri(C)).
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Proof
(i) Since T is linear we have T (C) ⊆ T (cl(C)) ⊆ cl(T (C)) from which we obtain that

cl(T (C)) = cl(T (cl(C))). This proves that cl(T (C)) is a convex set. Taking the rela-
tive interior of both sides, then using the well-known relations ri(cl(A)) = ri(A) and
ri(T (B)) = T (ri(B)) for any convex sets A and B (see for instance [15]), and the fact
that C is an almost convex set, we get the following relations

ri(cl(T (C))) = ri(cl(T (cl(C)))) = ri(T (cl(C))) = T (ri(cl(C))) ⊆ T (C), (3)

which shows that T (C) is an almost convex set.
(ii) By part (i), (3) and Lemma 2.1, we have that

ri(T (C)) = ri(cl(T (C))) = T (ri(cl(C))) = T (ri(C))

as claimed. ��
An immediate consequence of Lemmas 2.3 and 2.4 using the linear operator T : R

n×R
n →

R
n, T (x, y) = αx + βy is given by the observation that

ri(αC1 + βC2) = αri(C1) + βri(C2), (4)

for any α, β ∈ R and Ci ⊆ R
n, i = 1, 2 almost convex sets.

The results above reveal that almost convex sets are in some sense “not so far” from convex
sets. However, there are basic properties of convex sets like “the intersection of any family
of convex sets is also convex” which almost convex sets fail to possess. The next example
shows even more: the intersection of a linear subspace with an almost convex set may not be
almost convex.

Example 2.2 (The intersection of almost convex sets is not almost convex in general.) Take
the set C as in Example 2.1 and let D = {(0, y) : y ∈ R} ⊆ R

2. Then both sets are almost
convex (D is even convex, as being a linear subspace), C ∩ D = {(0, y) : y ∈ [0, 1] ∩ Q)}
has cl(C ∩ D) convex, but ri(cl(C ∩ D)) � C ∩ D. This shows that C ∩ D is not an almost
convex set.

A careful examination of the example above shows that the relative interiors of the two
sets (nonempty for each of them) have no common point. As shown by the next result (which
can be seen as an extension of Theorem 6.5 of [15]), the “intersection property” holds for
an arbitrary family of almost convex sets too, provided their relative interior have a common
point.

Theorem 2.1 Let Ci ⊆ R
n(i ∈ I ) be almost convex sets satisfying ∩i∈I ri(Ci) �= ∅. Then

(i) cl(∩i∈ICi) = ∩i∈I cl(Ci);
(ii) ∩i∈ICi is almost convex;

If the set I is finite, then also
(iii) ri(∩i∈ICi) = ∩i∈I ri(Ci);

Proof
(i) Let x ∈ ∩i∈I ri(Ci) and take an arbitrary y ∈ ∩i∈I cl(Ci). Then by Lemma 2.2

(1 − α)x + αy ∈ ∩i∈I ri(Ci), ∀ 0 ≤ α < 1,

thus, by letting α → 1 we obtain y ∈ cl(∩i∈I ri(Ci)). It follows that

∩i∈I cl(Ci) ⊆ cl(∩i∈I ri(Ci)) ⊆ cl(∩i∈ICi) ⊆ ∩i∈I cl(Ci), (5)

hence, (i) holds.
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(ii) By part (i) cl(∩i∈ICi) = ∩i∈I cl(Ci), which shows that the set cl(∩i∈ICi) is convex.
On the other hand, by (5) we obtain that cl(∩i∈I ri(Ci)) = cl(∩i∈ICi) and thus

ri(cl(∩i∈I ri(Ci))) = ri(cl(∩i∈ICi)). (6)

As a consequence of Lemma 2.1 and the almost convexity of Ci (i ∈ I ), the sets ri(Ci)

are convex. Thus ∩i∈I ri(Ci) is also convex (and, by the hypothesis, nonempty). Applying
now again Lemma 2.1 for the convex set ∩i∈I ri(Ci) leads to

ri(cl(∩i∈I ri(Ci))) = ri(∩i∈I ri(Ci)) ⊆ ∩i∈I ri(Ci) ⊆ ∩i∈ICi,

which, together with (6) proves the assertion (ii).

(iii) By Theorem 6.5 (part two) of [15] applied to cl(Ci) instead of Ci we obtain

ri(∩i∈I cl(Ci)) = ∩i∈I ri(cl(Ci)). (7)

The right hand side of this relation equals ∩i∈I ri(Ci). Using (i), (ii) and Lemma 2.1
one gets ri(∩i∈I cl(Ci)) = ri(cl(∩i∈ICi)) = ri(∩i∈ICi), and this together with (7)
provides (iii). ��

Next we show another important property of almost convex sets. The following result can
be seen as an extension of Theorem 6.7 of [15].

Theorem 2.2 Let T : R
n → R

m be a linear mapping and let C ⊆ R
m be an almost convex

set such that T −1(ri(C)) �= ∅. Then

ri(T −1(C)) = T −1(ri(C)), cl(T −1(C)) = T −1(cl(C)).

Proof Let D = R
n × C, and let G ⊆ R

n × R
m be the graph of T . By the hypothesis the set

ri(G) ∩ ri(D) = G ∩ ri(D) is nonempty. Thus, by Theorem 2.1 (ii) G ∩ D is an almost
convex set. We have T −1(C) = PrRn(G ∩ D), where PrRn is the projection operator of
R

n × R
m to R

n. Since this operator is linear, we obtain by Lemma 2.4

ri(T −1(C)) = PrRn(ri(G ∩ D)) = PrRn(G ∩ ri(D)) = T −1(ri(C)),

thus proving the first claim. For the second claim observe that cl(T −1(C)) ⊆ T −1(cl(C))

by the continuity of T . The reverse inclusion follows by the obvious relations (using that
G ∩ ri(D) = ri(G) ∩ ri(D) �= ∅)

cl(T −1(C)) = cl(P rRn(G ∩ D)) ⊇ PrRn(cl(G ∩ D))

= PrRn(G ∩ cl(D)) = T −1(cl(C)). ��
By Theorem 2.2 we immediately obtain the following result.

Corollary 2.1 If the linear operator T : R
n → R

m satisfies T −1(ri(C)) �= ∅ for an almost
convex set C ⊆ R

m, then T −1(C) is an almost convex set.

2.2 Almost convex functions

In this subsection we define the concept of almost convexity for extended real valued func-
tions and for vector valued functions with respect to a set. Also, we show some important
properties needed for establishing strong duality results.
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Let f : R
n → R, g : R

n → R
m and M ⊆ R

m a nonempty set. Recall that the epigraph of
f is defined to be the set epi(f ) = {(x, r) ∈ R

n × R : f (x) ≤ r} and the effective domain
as dom(f ) = {x ∈ R

n : f (x) < +∞}. The function f is called proper if f (x) > −∞ for
all x ∈ R

n and dom(f ) �= ∅.
Define the epigraph of g with respect to the set M as

epiM(g) = {(x, y) ∈ R
n × R

m : y − g(x) ∈ M}.
Definition 2.2 The function f : R

n → R is said to be almost convex if epi(f ) is an almost
convex set (in R

n × R). Moreover, the vector-valued function g: R
n → R

m is almost convex
with respect to M (shortly M-almost convex) if epiM(g) is an almost convex set (in R

n×R
m).

We notice that dom(f ) = PrRn(epi(f )) with PrRn : R
n ×R → R

n the linear projection
operator, is almost convex if f is almost convex as a consequence of Lemma 2.4 (i).

Recall that in Example 2.1 we constructed an almost convex set C ⊆ R2 which is not a
convex set. Taking the indicator function δC of the set C it is immediate that this function is
almost convex but not convex. With respect to vector-valued functions, the set M is usually a
convex cone K (e.g. in optimization theory) and the concept of K-convex functions, defined
as having their epigraph a convex set, is widely used within the literature.

One might wonder whether there existK-almost convex functions without beingK-convex,
or, in other words, the concept introduced in Definition 2.2 is a proper generalization of
K-convexity? The next example provides such a function.

Example 2.3 (K-almost convex function which is not K-convex) Let g: R → R
2 given by

g(x) =
{

(x, 0), x ∈ Q,

(0, 0), x ∈ R \ Q,

and let K = {(0, 0)}∪{(s, t) ∈ R
2 : t > 0}. It is obvious that epiK(g) = graph(g)+{0}×K

and

graph(g) = {(x, x, 0) ∈ R
3: x ∈ Q} ∪ {(x, 0, 0) ∈ R

3: x ∈ R \ Q}.
This leads to epiK(g) = graph(g) ∪ {(x, y, z) ∈ R

3: z > 0}. It can be easily seen that
this set is almost convex without being convex.

It follows by Definition 2.2 and Lemma 2.1 that for an M-almost convex function g: R
n →

R
m the set ri(epiM(g)) is nonempty and convex. The next result establishes an exact formu-

lation of this set.

Lemma 2.5 Suppose that g: R
n → R

m is an M-almost convex function. Then one has

ri((epiM(g))) = {(x, y) ∈ R
n × R

m: y − g(x) ∈ ri(M)}. (8)

Proof Consider the projection operators PrRn : R
n×R

m → R
n on R

n and PrRm : R
n×R

m →
R

m on R
m.

For an element (x, y) ∈ R
n × R

m, one has that (x, y) ∈ ri((epiM(g))) if and only
if x ∈ R

n and y ∈ PrRm (ri((epiM(g))) ∩ ({x} × R
m)). Since by Lemma 2.4 we obtain

PrRn (ri((epiM(g)) = ri (P rRn(epiM(g))) = R
n, for all x ∈ R

n it holds

∅ �= ri((epiM(g))) ∩ ({x} × R
m) = ri((epiM(g))) ∩ ri({x} × R

m)

= ri
(
epiM(g) ∩ ({x} × R

m)
)
.
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Thus by Lemma 2.4 (ii) (x, y) ∈ ri(epiM(g)) if and only if x ∈ R
n and

y ∈ PrRm

(
ri

(
(epiM(g)) ∩ ({x} × R

m)
)) = ri

(
PrRm((epiM(g)) ∩ ({x} × R

m))
)
.

Since for x ∈ R
n, P rRm((epiM(g)) ∩ ({x} × R

m)) = g(x) + M , we get that (x, y) ∈
ri((epiM(g))) if and only if x ∈ R

n and y ∈ ri(g(x)+M) = g(x)+ ri(M). This concludes
the proof. ��

Lemma 2.5 leads to the following result.

Lemma 2.6 Suppose that X ⊆ R
n is an almost convex set and g: R

n → R
m is an M-almost

convex function. Then one has ri(g(X) + M) = g(ri(X)) + ri(M).

Proof By using the projection operator PrRm : R
n ×R

m → R
m, we can write ri(g(X)+M)

equivalently as

ri(g(X) + M) = ri
(
PrRm(epiM(g) ∩ (X × R

m))
)
.

As shown by the proof of Lemma 2.5 ri(epiM(g)) ∩ ({x} × R
m) �= ∅ for every x ∈ R

n,
thus ri(epiM(g)) ∩ ri(X × R

m) is nonempty and by Theorem 2.1 and Lemma 2.4 we get
that epiM(g) ∩ (X × R

m) is almost convex and moreover

ri
(
PrRm

(
epiM(g) ∩ (X × R

m)
)) = PrRm

(
ri(epiM(g) ∩ (X × R

m))
)

= PrRm

(
ri(epiM(g)) ∩ (ri(X) × R

m)
)
.

But, by the previous lemma it holds ri(epiM(g)) ∩ (ri(X) × R
m) = {(x, y) : x ∈

ri(X), y ∈ g(x) + ri(M)} and so PrRm (ri(epiM(g)) ∩ (ri(X) × R
m)) = g(ri(X)) +

ri(M). In conclusion, ri(g(X) + M) = g(ri(X)) + ri(M). ��
It is well-known that any local minimum point of a convex function is also a global mini-

mum point. One might wonder whether this important property still holds for almost convex
functions. The next result shows that it is indeed the case.

Theorem 2.3 Suppose f : R
n → R is a proper almost convex function. If x̄ ∈ dom(f ) is a

local minimum point of f then it is also a global minimum point of f .

Proof Our assumption means that there exists an ε > 0 such that f (x̄) ≤ f (x) for every
x ∈ dom(f )∩B(x̄, ε), where B(x̄, ε) is the open ball centered at x̄ with radius ε. Supposing
the contrary, there exists an element ȳ ∈ dom(f ) such that

f (ȳ) < f (x̄) (9)

We have ȳ ∈ dom(f ) ⊆ dom(f̄ ), where f̄ is the so called lower semicontinuous hull
function of f , which - in case f is almost convex - is a convex function (see for instance
[6]). Therefore ri(dom(f̄ )) �= ∅, thus by choosing an element z̄ ∈ ri(dom(f̄ )) we obtain
by Theorem 6.1 of [15] t z̄ + (1 − t)ȳ ∈ ri(dom(f̄ )), ∀ 0 < t ≤ 1. Thus, by Theorem 1 of
[3] (see also [6]) and the convexity of f̄ we obtain

f (t z̄ + (1 − t)ȳ) = f̄ (t z̄ + (1 − t)ȳ) ≤ t f̄ (z̄) + (1 − t)f̄ (ȳ)

= f̄ (ȳ) + t (f̄ (z̄) − f̄ (ȳ)) ≤ f (ȳ) + t (f̄ (z̄) − f̄ (ȳ)), ∀ 0 < t ≤ 1.

(10)

Due to (9) we may choose a (sufficiently small) t̄ > 0 such that f (ȳ)+ t̄ (f̄ (z̄)− f̄ (ȳ)) <

f (x̄) and such, denoting z(t̄) = t̄ z̄ + (1 − t̄ )ȳ ∈ ri(dom(f̄ )) we obtain by (10) that

f (z(t̄)) < f (x̄). (11)
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Now since x̄ ∈ dom(f ) ⊆ dom(f̄ ), again by Theorem 6.1 of [15] we have λz(t̄) +
(1 − λ)x̄ ∈ ri(dom(f̄ )), ∀ 0 < λ ≤ 1, hence by (11)

f (λz(t̄) + (1 − λ)x̄) = f̄ (λz(t̄) + (1 − λ)x̄)

≤ λf̄ (z(t̄)) + (1 − λ)f̄ (x̄) < f̄ (x̄) ≤ f (x̄), ∀ 0 < λ ≤ 1. (12)

Since λz(t̄) + (1 − λ)x̄ → x̄ as λ → 0, one may choose 0 < λ̄ < 1 such that x(λ̄) =
λ̄z(t̄) + (1 − λ̄)x̄ ∈ B(x̄, ε) and such, by (12) we obtain that f (x(λ̄)) < f (x̄), contradicting
the hypothesis. This completes the proof. ��

As well-known, the property discussed in Theorem 2.3 i.e, “local minima coincide with
global minima” is satisfied by quasiconvex functions as well. One might wonder what is
the relationship between the classes of almost convex and quasiconvex functions. The next
two examples show that none of them is included in the other. First we construct an almost
convex function whose domain is a convex set, which is not quasiconvex.

Example 2.4 (Almost convex function which is not quasiconvex) Let C = [0, 1] × [0, 1] ∈
R

2 and define f : R
2 → R as

f (x, y) =
⎧⎨
⎩

1, (x, y) = (0, 1/2)

0, (x, y) ∈ C \ {(0, 1/2)}
+∞, (x, y) /∈ C.

It is easy to see that f is almost convex. On the other hand,

1 = f

(
(0, 0) + (0, 1)

2

)
> max{f (0, 0), f (0, 1)} = 0,

showing that f is not quasiconvex.

It is obvious that not any quasiconvex function is almost convex. For instance, f : R → R

given by

f (x) =
{√

x, x ≥ 0
0, x < 0

is increasing, and such quasiconvex, but clearly not almost convex.

3 Strong duality for almost convex optimization problems

One of the most fruitful approaches in the duality theory is the one based on the so-called
perturbation theory. The main idea is to attach to a general optimization problem (notice
that every constrained optimization problem may be equivalently written as an optimization
problem without constraints, but with a different objective function)

(P ) inf
x∈Rn

F (x),

where F : R
n → R = R ∪ {±∞}, a dual one by using the perturbation function �:

R
n × R

m → R. We call R
m the space of the perturbation variables and � has to fulfill

the following relation �(x, 0) = F(x),∀x ∈ R
n. A dual problem to (P ) may be defined as

follows [5, 15]

(D) sup
y∗∈Rm

{−�∗(0, y∗)},

where by �∗ we denote the conjugate of the function �.
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From this generalized dual one can obtain for constrained primal problems in particular
three dual problems (i.e., Lagrange, Fenchel and Fenchel-Lagrange) by choosing the pertur-
bation function � in an appropriate way as done in [16] and [2].

In connection with the perturbation function � define the so called infimal value function
h: R

m → R by

h(y) = inf{�(x, y) : x ∈ R
n}. (13)

Obviously, the primal problem (P ) can be written as h(0) = inf{�(x, 0) : x ∈ R
n}, while

an easy calculation shows that the dual (D) is the problem

sup
y∗∈Rm

{−h∗(y∗)},

where h∗ denotes the conjugate function of h. If we denote by v(P ) and v(D) the optimal
objective values of the primal and the dual problems, respectively, then it is immediate that
v(D) ≤ v(P ) (weak duality). It is well-known that under usual convexity and regularity
assumptions the strong duality also holds, i.e., v(P ) = v(D) and the dual problem admits
at least one solution (see for instance [15]). It comes out naturally to investigate whether the
strong duality holds for the general problems (P ) and (D) if one is weakening the convexity
assumptions usually considered in the literature. Next we show that the strong duality result
for the above mentioned problems by replacing the convexity with almost convexity still
holds.

Theorem 3.1 Suppose that the function h: R
m → R is almost convex and 0 ∈ ri(dom(h)).

Then there exists a vector y∗ ∈ R
m such that

h(0) = −h∗(y∗). (14)

Proof In case h(0) = −∞ (14) holds trivially for every y∗ ∈ R
m. Therefore, we can

assume that h(0) > −∞ and so, by 0 ∈ ri(dom(h)) it follows that h(0) is finite. As men-
tioned within the proof of Theorem 2.3, the function h̄ is convex. Moreover (cf. [6] or [3])
ri(dom(h)) = ri(dom(h̄)) and h(0) = h̄(0), thus h̄(0) is also finite. It follows by Corollary
7.2.1 of [15] that h̄ is proper and since 0 ∈ ri(dom(h̄)) we obtain from Theorem 23.4 of [15]
that ∂h̄(0) �= ∅, which implies the existence of a vector y∗ ∈ ∂h̄(0) meaning that

h̄(0) + h̄∗(y∗) = 0. (15)

Since h(0) = h̄(0) and (h̄)∗ = h∗ (15) reduces to (14). ��
Observe that Theorem 3.1 provides strong duality between the primal problem (P ) and

its dual (D). Indeed, relation (14) implies v(P ) = v(D) with y∗ being a solution of (D).
In the last result almost convexity of the function h plays a crucial role. Therefore it

is natural to ask which condition on the function � guarantees the almost convexity of h.
The next result gives an answer to this question.

Theorem 3.2 If the function � is almost convex, then h is also almost convex.

Proof First we show that the set cl(epi(h)) is convex. To do so, let us denote by PrRm×R :
R

n × R
m × R → R

m × R the projection operator of R
n × R

m × R on R
m × R. Clearly this is

a linear operator. Denoting by epiS(h) the strict epigraph of h, i.e. the set {(y, r) ∈ R
m ×R :

h(y) < r}, it is immediate to check that

epiS(h) ⊆ PrRm×R(epi(�)) ⊆ epi(h). (16)
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Taking into consideration that cl(epiS(h))= cl(epi(h)), relation (16) leads to cl(epi(h))=
cl(P rRm×R(epi(�))). Since epi(�) is almost convex, it follows by Lemma 2.4 (i) that
PrRm×R(epi(�) is almost convex, hence cl(epi(h)) is a convex set. In order to prove the
relation ri(cl(epi(h)) ⊆ epi(h), observe that ri(cl(epi(h))) = ri(cl(P rRm×R(epi(�)))) ⊆
PrRm×R(epi(�)) ⊆ epi(h). This completes the proof. ��

The next result is an immediate consequence of Theorems 3.1 and 3.2.

Corollary 3.1 Suppose that the function �: R
n × R

m → R is almost convex and 0 ∈
ri(P rRm(dom(�))). Then we have strong duality between the problems (P ) and (D).

Proof By Theorem 3.2 the function h given by (13) is almost convex. Moreover, the obvi-
ous equality dom(h) = PrRm(dom(�)) implies that ri(dom(h)) = ri(P rRm(dom(�))).
Thus by Theorem 3.1 we obtain h(0) = −h∗(y∗). This implies by h(0) = v(P ), h∗(y∗) =
�∗(0, y∗) and weak duality (v(D) ≤ v(P )) that v(D) = v(P ) and y∗ is a solution of the
dual problem. ��
4 Applications: Lagrange, Fenchel and Fenchel–Lagrange duality

In this section we apply the results of Sect. 3 to obtain strong duality for almost convex opti-
mization problems in case of different types of dual problems considered within the literature
(see for instance [16,2]).

4.1 Lagrange and Fenchel–Lagrange duality for almost convex optimization problems

Let X ⊆ R
n be a nonempty set and K ⊆ R

k a nonempty convex cone with K∗ := {k∗ ∈
R

k : k∗T k ≥ 0,∀k ∈ K} its dual cone. Consider the partial ordering ≤K induced by K

in R
k , namely for y, z ∈ R

k we have that y ≤K z, iff z − y ∈ K . Let f : R
n → R and

g = (g1, . . . , gk)
T : R

n → R
k . The optimization problem which we investigate in this

subsection is the following

(P 1) inf
x∈G

f (x),

where

G = {x ∈ X : g(x) ≤K 0}.

In what follows we always suppose that the set G ∩ dom(f ) is nonempty. We denote by
v(P 1) the optimal objective value of (P 1). It is easy to see that in fact (P 1) is a particular
case of (the general) primal problem (P ): take F : R

n → R given by F(x) = f (x) + δG(x),
with δG the indicator function of the set G.

By giving particular forms for the perturbation function �: R
n × R

m → R introduced
in Sect. 3 we obtain two types of dual problems attached to the primal optimization prob-
lem (P 1): the Lagrange and the Fenchel–Lagrange dual problem. Using the general duality
theorem established in Sect. 3 (Corollary 3.1), we obtain strong duality results for these types
of dual problems. Let us first start with Lagrange duality.

Consider the function �L : R
n × R

k → R defined by

�L(x, y) =
{

f (x), if x ∈ X, g(x) ≤K y,

+∞, otherwise.
(17)
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Notice that evaluating �∗
L(0, y∗) yields ( cf. [2,16]) with the definition of the dual problem

(D) introduced in Sect. 3 (with m = k and � = �L) the well-known Lagrange dual problem

(DL) sup
y∗∈K∗

inf
x∈X

{f (x) + (y∗)T g(x)}.

The next result guarantees the almost convexity of the function �L under some suitable
conditions upon X, f and g.

Theorem 4.1 If X ⊆ R
n is an almost convex set, f : R

n → R is an almost convex function,
g: R

n → R
k is a K-almost convex (vector-valued) function and

ri(X) ∩ ri(dom(f )) �= ∅, (18)

then �L given by relation (17) is an almost convex function.

Proof Define the linear operator T : R
n × R × R

k → R
n × R

k × R given by T (x, r, y) =
(x, y, r). Then it is easy to verify that

epi(�L) = T (epi(f ) × R
k) ∩ (epiK(g) × R) ∩

(
X × R

k × R

)
. (19)

By Lemmas 2.3 and 2.4 (i) the sets T (epi(f ) × R
k), epiK(g) × R and X × R

k × R are
almost convex. If we show that

ri
(
T (epi(f ) × R

k)
)

∩ ri (epiK(g) × R) ∩ ri
(
X × R

k × R

)
�= ∅

or, equivalently,

T (ri(epi(f )) × R
k) ∩ (ri(epiK(g)) × R) ∩

(
ri(X) × R

k × R

)
�= ∅, (20)

then the assertion follows by Theorem 2.1(ii).
To do so, we consider x′ ∈ ri(dom(f )) ∩ ri(X), k′ ∈ ri(K) and y′ := g(x′) + k′.
Since x′ ∈ ri(dom(f )) ⊆ dom(f ) we may choose a number r ′ ∈ R with f (x′) < r ′.

The function f is almost convex, hence one has ri(dom(f )) = ri(dom(f̄ )) and f (x′) =
f̄ (x′) (see [3] or [6]). It is also known (cf. [15]) that ri(epi(f̄ )) = {(x, r) : f̄ (x) <

r, x ∈ ri(dom(f̄ ))}, therefore (x′, r ′) ∈ ri(epi(f̄ )) = ri(epi(f )). Thus (x′, r ′, y′) ∈
ri(epi(f )) × R

k and (x′, y′, r ′) ∈ T (ri(epi(f )) × R
k).

More than that, by Lemma 2.5 one has (x′, y′, r ′) ∈ (ri(epiK(g)) × R) ∩ (ri(X) × R
k ×

R), showing that (20) holds and concluding the proof. ��
Notice that the regularity condition (18) in Theorem 4.1 is essential: if we drop it, the

almost convexity of �L cannot be guaranteed, as the next example shows.

Example 4.1 Consider the set C = ([0, 2] × [0, 2]) \ ({0}×]0, 1[), let f = δC, g : R
2 → R

defined by g(x, y) = −1 for all (x, y) ∈ R
2,K = R+ and X = {0} × R ⊆ R

2. Then all the
assumptions of Theorem 4.1 are satisfied, except (18). Evaluating epi(�L) by formula (19)
we obtain

epi(�L) = ({(0, 0)} ∪ ({0} × [1, 2])) × [−1,+∞[×R+,

which is not an almost convex set.

Assuming relation (18) fulfilled, we say that the problem (P 1) satisfies the generalized
Slater condition if

0 ∈ ri[g(X ∩ dom(f )) + K]
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or, equivalently, (cf. Lemma 2.6 and Theorem 2.1)

0 ∈ g(ri(X) ∩ ri(dom(f ))) + ri(K). (21)

The result below states strong Lagrangian duality for almost convex functions under suitable
assumptions.

Theorem 4.2 Suppose that the assumptions of Theorem 4.1 and (21) hold. Then the strong
Lagrangian duality holds, i.e. v(P 1) = v(DL) and the dual problem admits a solution.

Proof We show that the assumptions of Corollary 3.1 hold for � = �L. Almost convexity
of �L is guaranteed by Theorem 4.1, so we only have to verify the regularity condition

0 ∈ ri(P r
Rk (dom(�L))). (22)

It is immediate to show that Pr
Rk dom(�L) = g(X ∩ dom(f )) + K , and so, (21) is

equivalent to (22). ��
Notice that in case the cone K has a nonempty interior (as for instance when K = R

k+
(the positive orthant of R

k)), the generalized Slater condition (21) reduces to the (usual)
Slater condition, namely

0 ∈ g(X ∩ dom(f )) + int (K), (23)

or, equivalently, there exists an element x̂ ∈ X∩dom(f ) such that g(x̂) ∈ −int (K). Indeed,
since in this case g(X ∩ dom(f )) + int (K) is an open set we have by Theorem 3.2 of [7]
that

ri[g(X ∩ dom(f )) + K] = int[g(X ∩ dom(f )) + K] = int[g(X ∩ dom(f )) + int (K)]
= g(X ∩ dom(f )) + int (K).

Let us turn now to study Fenchel–Lagrange duality.
Consider the function �FL: R

n × R
n × R

k → R given by

�FL(x, u, y) =
{

f (x + u), if x ∈ X, g(x) ≤K y,

+∞, otherwise.
(24)

Observe that evaluating �∗
FL(0, u∗, y∗) yields (cf. [2,16]) with the definition of the dual

problem (D) introduced in Sect. 3 (with m = n + k and � = �FL) the Fenchel–Lagrange
dual problem

(DFL) sup
u∗∈Rn,y∗∈K∗

{
−f ∗(u∗) + inf

x∈X
[(u∗)T x + (y∗)T g(x)]

}
.

First we give sufficient conditions for the almost convexity of the function �FL.

Theorem 4.3 If X ⊆ R
n is an almost convex set, f : R

n → R is an almost convex function,
g: R

n → R
k is a K-almost convex function and (18) holds, i.e., ri(X) ∩ ri(dom(f )) �= ∅,

then �FL given by relation (24) is an almost convex function.

Proof Consider the linear operators V : R
n×R

n×R
k ×R → R

n×R×R
k and W : R

n×R
k ×

R
n × R → R

n × R
n × R

k × R given by V (x, u, y, r) = (x + u, r, y) and W(x, y, u, r) =
(x, u, y, r), respectively. Then it can be easily checked that

epi(�FL) = V −1(epi(f ) × R
k) ∩ W(epiK(g) × R

n × R) ∩ (X × R
n × R

k × R). (25)
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By the same arguments as in the proof of Theorem 4.1 it follows that the sets W(epiK(g)×
R

n × R) and X × R
n × R

k × R are almost convex. Since f is almost convex, the set
ri(epi(f )) × R

k is nonempty, and so, if (x, r, y) ∈ ri(epi(f )) × R
k , then (x, 0, y, r) ∈

V −1(ri(epi(f ) × R
k)), hence V −1(ri(epi(f ) × R

k)) �= ∅. By Corollary 2.1 one gets that
the set V −1(epi(f )×R

k) is almost convex, too. Therefore the assertion follows by Theorem
2.1 (ii) if we show that

ri(V −1(epi(f ) × R
k)) ∩ ri(W(epiK(g) × R

n × R)) ∩ ri(X × R
n × R

k × R) �= ∅.

Let us choose x′ ∈ ri(X) ∩ ri(dom(f )), k′ ∈ ri(K), r ′ > f (x′) and define y′ :=
g(x′)+k′. Then, by the same argument as in the proof of Theorem 4.1, (x′, r ′) ∈ ri(epi(f )).
By Lemma 2.5, (x′, y′, 0, r ′) ∈ ri(epiK(g)) × R

n × R and so, by Lemma 2.4 (ii) it follows
that (x′, 0, y′, r ′) ∈ W(ri(epiK(g))×R

n×R) = ri(W(epiK(g)×R
n×R)). It is obvious that

(x′, 0, y′, r ′) ∈ ri(X ×R
n ×R

k ×R). Finally, since (x′, 0, y′, r ′) ∈ V −1ri((epi(f )×R
k)),

by Theorem 2.2 we obtain that (x′, 0, y′, r ′) ∈ ri(V −1(epi(f ) × R
k)). Thus we have found

an element belonging to

ri(V −1(epi(f ) × R
k)) ∩ ri(W(epiK(g) × R

n × R)) ∩ ri(X × R
n × R

k × R),

showing that this set is nonempty. This completes the proof. ��
Comparing Theorems 4.1 and 4.3 it can be seen that the same conditions guarantee the

almost convexity of �L and �FL. As the next result shows, the same conditions guarantee
the strong Lagrange and strong Fenchel–Lagrange duality for almost convex functions.

Theorem 4.4 Suppose that the assumptions of Theorem 4.2 hold. Then the strong Fenchel–
Lagrange duality holds, i.e., v(P 1) = v(DFL) and the dual problem admits a solution.

Proof We show that the assumptions of Corollary 3.1 hold for R
n × R

k instead of R
m and

for � = �FL. Almost convexity is guaranteed by Theorem 4.3, so we only have to verify
the regularity condition

(0, 0) ∈ ri(P r
Rn×Rk (dom(�FL))). (26)

To this aim consider the function F : R
n → R

n × R
k given by F(x) = (−x, g(x)). It is

immediate to check that Pr
Rn×Rk (dom(�FL)) = F(X) + dom(f ) × K .

Let us show that F is a dom(f ) × K-almost convex function. Indeed,

epidom(f )×K(F ) = {(x, u, y) ∈ R
n × R

n × R
k : (u, y) − F(x) ∈ dom(f ) × K}

= {(x, u, y) ∈ R
n × R

n × R
k : x + u ∈ dom(f ), y − g(x) ∈ K},

which is nothing else than the domain of �FL for the particular case X = R
n. We have

shown in Theorem 4.3 that �FL is almost convex (for any almost convex set X ⊆ R
n) and

its domain being the projection of its epigraph, it follows that epidom(f )×K(F ) is an almost
convex set, i.e., F is a dom(f ) × K-almost convex function. Now applying Lemma 2.6
for R

n × R
k instead of R

k, F instead of g and dom(f ) × K instead of M , we obtain that
(26) is equivalent to (0, 0) ∈ F(ri(X)) + ri(dom(f )) × ri(K), which is nothing else than
there exists a vector x′ ∈ ri(X) ∩ ri(dom(f )) such that g(x′) ∈ −ri(K). Since the latter is
equivalent to (21), the proof is complete. ��
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4.2 Fenchel duality for almost convex optimization problems

Consider the functions f : R
n → R, g: R

k → R and a linear operator A: R
n → R

k . Define
�F : R

n × R
k → R by

�F (x, y) = f (x) + g(Ax + y). (27)

The primal problem we deal with in this subsection is

(P 2) inf
x∈Rn

{f (x) + g(Ax)}.
Notice that evaluating �∗

F (0, y∗) yields with the definition of the dual problem (D)

introduced in Sect. 3 (with m = k and � = �F ) the well-known Fenchel dual problem

(DF ) sup
y∗∈Rk

{−f ∗(−A∗y∗) − g∗(y∗)},

where A∗ denotes the adjoint operator of A. The next result, needed for Fenchel duality,
provides sufficient conditions for almost convexity of �F .

Theorem 4.5 If f : R
n → R and g: R

k → R are proper almost convex functions, than the
function �F given by (27) is almost convex.

Proof Let us consider the linear operators V : R
n × R

k × R → R
n × R

k × R and W : R
n ×

R × R
k × R → R

n × R
k × R defined by V (x, y, r) = (x,Ax + y, r) and W(x, r, y, s) =

(x, y, r + s), respectively. Then a simple calculation shows that the epigraph of �F can be
evaluated as epi(�F ) = V −1(W(epi(f ) × epi(g))).

Indeed, (x, y, r) ∈ epi(�F ) ⇔ f (x) + g(Ax + y) ≤ r ⇔ ((x, f (x)), (Ax + y, r −
f (x))) ∈ epi(f ) × epi(g) ⇔ (x,Ax + y, r) ∈ W(epi(f ) × epi(g)) ⇔ (x, y, r) ∈
V −1(W(epi(f ) × epi(g))).

By Lemmas 2.3 and 2.4 (i) it follows that W(epi(f )×epi(g)) is an almost convex set, and
by Corollary 2.1 we conclude the proof if we show that V −1(ri(W(epi(f )× epi(g)))) �= ∅.
Since f and g are almost convex, ri(epi(f )) × ri(epi(g)) �= ∅, thus, by Lemma 2.4
(ii) we obtain ri(W(epi(f ) × epi(g))) = W(ri(epi(f ) × epi(g))) �= ∅. Choose an ele-
ment (x′, y′, r ′) ∈ ri(W(epi(f )× epi(g))). Then (x′, y′ −Ax′, r ′) ∈ V −1(ri(W(epi(f )×
epi(g)))) and we are done. ��

Notice that differently to Theorems 4.1 and 4.3 in Theorem 4.5 no regularity condition is
needed.

Now let us give sufficient conditions for the Fenchel duality in case of almost convex
optimization problems.

Theorem 4.6 If the assumptions of Theorem 4.5 are satisfied and

ri(dom(g)) ∩ A(ri(dom(f ))) �= ∅, (28)

the strong Fenchel duality holds, i.e., v(P 2) = v(DF ) and the dual problem admits a solution.

Proof By Theorem 4.5 we obtain that �F is almost convex. The result follows by
Corollary 3.1 if we show that

0 ∈ ri
(
Pr

Rk (dom(�F ))
)
. (29)

To do this, let us observe that y ∈ Pr
Rk (dom(�F )) ⇔ ∃x ∈ R

n : f (x) + g(Ax + y) <

+∞ ⇔ ∃x ∈ R
n : x ∈ dom(f ),Ax + y ∈ dom(g) ⇔ ∃x ∈ R

n : x ∈ dom(f ),
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y ∈ dom(g) − Ax ⇔ y ∈ dom(g) − A(dom(f )). This shows that (29) is equivalent to
0 ∈ ri(dom(g) − A(dom(f ))), which is equivalent to (28). ��

Let us finally notice that in Theorem 4.6 we have rediscovered the strong Fenchel duality
result for almost convex optimization problems presented in [3] by using a different approach.

Acknowledgements The authors are thankful to two anonymous referees for their comments and remarks
which improved the quality of the presentation.
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